Facile Energy Gap Tuning in Nanographene-MOFs

15 March 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The utilization of metal-organic frameworks (MOFs) in photocatalysis applications requires light-responsive architectures with tunable optical bandgaps. Here, we demonstrate a facile approach to optical bandgap tuning via post-synthetic modifica-tions of pbz-MOF-1, a Zr-based MOF with polyphenylene ligands. A simple reaction of pbz-MOF-1 with FeCl3 was shown to induce three different chemical reactions of the ligands: oxidative dehydrogenation, chlorination and one/two electron oxi-dation of the ligands. The result of these reactions was a gradual decrease in the optical bandgap from 2.95 eV to as little as 0.69 eV. Time-resolved optical spectroscopy and electron paramagnetic resonance spectroscopy, coupled with density functional theory calculations provide insights into the mechanisms of bandgap tuning using chemical oxidation methods. The facile bandgap tuning report here has promising application in the utilization of photo-responsive MOFs in photocatalysis, sensing and other light-triggered applications.

Keywords

Zirconium metal-organic frameworks
bandgap tuning

Supplementary materials

Title
Description
Actions
Title
Supporting Information for Facile Energy Gap Tuning in Nanographene-MOFs
Description
Ligand and MOF synthesis and characterization, computational methods
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.