Abstract
The narrowband emission required by wide color gamut display is an extremely important research topic for any luminescence mechanism, which has made significant progress in traditional fluorescence and thermally activated delayed fluorescence (TADF) based on purely organic compounds, but is far from mature in phosphorescence based on metal organic complexes. Herein, we propose a feasible molecular design paradigm for constructing the desirable narrowband-emission organic electroluminescence (EL) emitter by integrating an original multi-resonance thermally activated delayed fluorescent (MR-TADF) fragment into the classical heavy metal platinum (II) complex. The target model platinum (II) complex BNCPPt shows green emission with a single peak at 497 nm and the quite narrow full-width at half-maximum (FWHM) of 27 nm in toluene.
Supplementary materials
Title
Electronic Supplementary Information (ESI) available
Description
Synthesis and characterization details; Theoretical calculation and Photophysical property Cyclic voltammograms for electrochemistry measurements.
Actions