Click-electrochemistry for the rapid labeling of virus, bacteria and cell surfaces

07 March 2023, Version 1

Abstract

The remodeling of microorganism surfaces with biomolecules is a powerful tool to study the role of membrane receptors in chemical biology and to develop drug delivery systems in gene therapy using viral vectors and cell-based therapies. Methods for direct covalent ligation of these surfaces remain poorly reported, and mostly based on metabolic engineering for bacteria and cells functionalization. In the latter case, a tagged precursor must first be enzymatically metabolized and delivered to the outer cell membrane to become available for chemo-selective labeling. While effective, a faster method avoiding the bio-incorporation step would be highly complementary. This would also need to be compatible with organisms showing poor levels of precursor assimilation or lacking the metabolic function. Here, we used N-methylluminol (NML), a fully tyrosine-selective protein anchoring group after one-electron oxidation, to label the surface of viruses, living bacteria and cells. The functionalization was performed electrochemically and in situ by applying a 750 mV vs Ag/AgCl electric potential to aqueous buffered solutions of tagged NML containing the viruses, bacteria or cells. The electro-coupling was performed with NML anchors bearing a bioorthogonal azide, biotin, or carbohydrate (mannose and N-acetyl galactosamine) handles. The broad applicability of the click-electrochemistry method was explored on recombinant adeno-associated viruses (rAAV2), E. coli (Gram-) and S. epidermis (Gram+) bacterial strains, and HEK293 and HeLa eukaryotic cell lines. Surface electro-conjugation was achieved in minutes to yield functionalized rAAV2 that conserved both structural integrity and infectivity properties, and living bacteria and cell lines that were still alive and able to divide. As NML activation immediately stops if there is no current, the method offers reproducible temporal control on the degree of surface functionalization. Thus, click-electrochemistry should significantly expand the scope of bioconjugation methods.

Keywords

bioconjugation
click chemistry
electrochemistry
virus
bacteria
cells

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Procedures and characterizations
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.