Skeletal Transformation of Unactivated Arenes Enabled by a Low-Temperature Dearomative (3+2) Cycloaddition

03 March 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Simple aromatic compounds like benzene are abundant feedstocks, for which the preparation of derivatives chiefly begins with electrophilic substitution reactions, or less frequently reductions. Their high stability makes them particularly reluctant to participate in cycloadditions under ordinary reaction conditions. Here we demonstrate the exceptional ability of 1,3-diaza-2-azoniaallene cations to undergo formal (3+2) cycloadditions with unactivated benzene derivatives, below room temperature, to provide thermally stable dearomatized adducts on a multi-gram scale. The cycloaddition, which tolerates polar functional groups, activates the ring toward further elaboration. On treatment with dienophiles the cycloadducts undergo a (4+2) cycloaddition-cycloreversion cascade to yield substituted or fused arenes, including naphthalene derivatives. The overall sequence results in the transmutation of arenes through an exchange of the ring's carbons: a two-carbon fragment from the original aromatic ring is replaced with another from the incoming dienophile, introducing an unconventional disconnection for the synthesis of ubiquitous aromatic building blocks. Applications of this two-step sequence to the preparation of substituted acenes, isotopically labeled molecules, and medicinally relevant compounds are demonstrated.

Keywords

dearomatization
dipolar cycloaddition
Diels-Alder
cycloreversion
arenes

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Experimental procedures and characterization data for novel compounds, computational details including coordinates (PDF).
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.