Decoding Optical Responses of Contact-Printed Arrays of Thermotropic Liquid Crystals Using Machine Learning: Detection and Reporting of Aqueous Amphiphiles with Enhanced Sensitivity and Selectivity

24 February 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Surfactants and other amphiphilic molecules are used extensively in household products, industrial processes, and biological applications, and are also common environmental contaminants; as such, methods that can detect, sense, or quantify them are of great practical relevance. Aqueous emulsions of thermotropic liquid crystals (LCs) can exhibit distinctive optical responses in the presence of surfactants and have thus emerged as sensitive, rapid, and inexpensive sensors or reporters of environmental amphiphiles. However, many existing LC-in-water emulsions require the use of complicated or expensive instrumentation for quantitative characterization, owing to variations in optical responses among individual LC droplets. In many cases, the responses of LC droplets are also analyzed by human inspection, which can miss subtle color or topological changes encoded in LC birefringence patterns. Here, we report an LC-based surfactant sensing platform that takes a step toward addressing several of these issues and can reliably predict concentrations and types of model surfactants in aqueous solutions. Our approach uses surface-immobilized, microcontact printed arrays of micrometer-scale droplets of thermotropic LCs and hierarchical convolutional neural networks (CNNs) to automatically extract and decode rich information about topological defects and color patterns available in optical micrographs of LC droplets to classify and quantify adsorbed surfactants. In addition, we report computational capabilities to determine relevant optical features extracted by the CNN from LC micrographs, which can provide insights on surfactant adsorption phenomena at LC-water interfaces. Overall, the combination of microcontact-printed LC arrays and machine learning provides a convenient and robust platform that could prove useful for developing high-throughput sensors for on-site testing of environmentally or biologically relevant amphiphiles.

Keywords

liquid crystals
amphiphiles
surfactants
machine learning
neural networks
sensors

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.