Abstract
The theoretical modeling of metal/water interfaces centers on an appropriate configuration of the electric double layer (EDL) under grand canonical conditions. In principle, ab initio molecular dynamics (AIMD) simulations would be the appropriate choice for treating the competing water-water and water-metal interactions and explicitly considering the atomic and electronic degrees of freedom. However, this approach only allows simulations of relatively small canonical ensembles over a limited period (shorter than 100 ps). On the other hand, computationally efficient semiclassical approaches can treat the EDL model based on a grand canonical scheme by averaging the microscopic details. Thus, an improved description of the EDL can be obtained by combining AIMD simulations and semiclassical methods based on a grand canonical scheme. By taking the Pt(111)/water interface as an example, we compare these approaches in terms of the electric field, water configuration, and double-layer capacitance. Furthermore, we discuss how the combined merits of the approaches can contribute to advances in EDL theory.
Supplementary materials
Title
Detailed functional forms and parameter values of the semiclassical model
Description
Detailed functional forms and parameter values of the semiclassical model.
Actions