A Double-Walled Tetrahedron with AgI4 Vertices Binds Different Guests in Distinct Sites

02 February 2023, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A double-walled tetrahedral metal-organic cage assembled in solution from silver(I), 2-formyl-1,8-naphthyridine, halide, and a threefold-symmetric triamine. The AgI4X clusters at its vertices bring together six naphthyridine-imine moieties, leading to a structure in which eight tritopic ligands bridge four clusters in an (AgI4X)4L8 arrangement. Four ligands form an inner set of tetrahedron walls that are surrounded by the outer four. The cage has significant interior volume, and was observed to bind anionic guests. The structure also possesses external binding clefts, located at the edges of the cage, which bound small aromatic guests. Halide ions bound to the silver clusters were observed to exchange in a well-defined hierarchy, allowing modulation of the cavity volume. The principles uncovered here may allow for increasingly more sophisticated cages with silver- cluster vertex architectures, with post-assembly tuning of the interior cavity volume enabling targeted binding behavior.

Keywords

Supramolecular self-assembly
metal-organic cages
silver clusters

Supplementary materials

Title
Description
Actions
Title
A Double-Walled Tetrahedron with AgI4 Vertices Binds Different Guests in Distinct Sites
Description
A double-walled tetrahedral metal-organic cage assembled in solution from silver(I), 2-formyl-1,8-naphthyridine, halide, and a threefold-symmetric triamine. The AgI4X clusters at its vertices bring together six naphthyridine-imine moieties, leading to a structure in which eight tritopic ligands bridge four clusters in an (AgI4X)4L8 arrangement. Four ligands form an inner set of tetrahedron walls that are surrounded by the outer four. The cage has significant interior volume, and was observed to bind anionic guests. The structure also possesses external binding clefts, located at the edges of the cage, which bound small aromatic guests. Furthermore, the halide ions bound to the silver clusters were observed to exchange in a well-defined hierarchy, thus enabling modulation of the cavity volume. The principles here uncovered may allow for the generation of increasingly more sophisticated cages with silver-cluster vertex architectures, with post-assembly tuning of the interior cavity volume enabling targeted binding behavior.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.