Unusual selective monitoring of N,N-dimethylformamide in a two-dimensional layered field-effect transistor

31 January 2023, Version 1

Abstract

N,N-Dimethylformamide (DMF) is an essential solvent in industries and pharmaceutics. Its market size range was estimated to be 2 billion US dollars in 2022. Monitoring DMF in solution environments in real time is significant because of its toxicity. However, DMF is not a redox-active molecule; therefore, selective monitoring DMF in solutions in real time requires an unprecedented design at the scale of atomic resolution. In this paper, we propose a selective DMF sensor using a molybdenum disulfide (MoS2) field-effect transistor (FET). The sensor responds to DMF molecules, but not to similar molecules of formamide, N,N-diethylformamide, and N,N-dimethylacetamide. The plausible atomic mechanism is the oxygen substitution sites on MoS2, on which the DMF molecule shows exceptional orientation. The thin structure of MoS2-FET can be incorporated into a microfluidic chamber, which leads to DMF monitoring in real time by exchanging solutions subsequently. The designed device shows DMF monitoring in NaCl ionic solutions from 1 to 200 L/mL. This work proposes the concept of selectively monitoring redox-inactive molecules based on the non-ideal atomic affinity site on the surface of two-dimensional semiconductors.

Keywords

Transition metal dichalcogenides
Molecular sensor
Dimethylformamide (DMF)
Molecular doping
Metal-oxide-semiconductor field-effect-transistor (MOSFET)

Supplementary materials

Title
Description
Actions
Title
Supplementary information
Description
Supplemental text and figures
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.