Quantifying the Influence of C-H···pi Interactions on Non-Aqueous Electrolyte Solubility

30 January 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

For redox active organic molecules (ROMs) used in grid-scale energy storage applications, such as redox flow batteries, solubility is an essential physicochemical property. Specifically, solubility is directly proportional to the volumetric energy density of an energy storage device and thus affects its corresponding spatial footprint. Recently pyridiniums have been introduced as a class of ROMs with high persistence in multiple redox states at low potentials. Unfortunately, solubility of pyridinium salts in non-aqueous media remains low (generally less than 1 M), and relatively few practical molecular design strategies exist for generalized improvement of ROM solubility. Herein, we convey the extent to which discrete, attractive interactions between C-H groups and the p-electrons of an aromatic ring (C-H···pi interactions) can describe the solubility of N-substituted pyridinium salts in a non-aqueous solvent (acetonitrile). We find a direct correlation between the extent of crystalline C-H···pi interactions for each pyridinium salt and its solubility in acetonitrile (R2 = 0.93, solubility range = 0.3 – 2.1 M). The presence of C-H···pi interactions reveals how large disparities in solubility between (e.g.) N-(p-tolyl)-4-phenyl-2,6-dimethylpyridinium (0.32 ± 0.03 M) and N-(p-tolyl)-4-(p-tolyl)-2,6-dimethylpyridinium (1.06 ± 0.03 M) tetrafluoroborate may arise despite differing in structure by only three atoms. The correlation presented in this work highlights a surprising consequence of disrupting strong electrostatic interactions with weak dispersion interactions, showing how minimal structural change can have dramatic effects on ROM solubility.

Keywords

Organic salt
acetonitrile
organic electrolyte
dispersion forces
pyridinium
structure-property relationships
molecular design
pyrylium
physicochemical properties

Supplementary materials

Title
Description
Actions
Title
Quantifying the Influence of C-H···pi Interactions on Non-Aqueous Electrolyte Solubility Supporting Information
Description
Computational data, crystal structure analysis, synthetic procedures, electrochemical data, modelling parameters in support of the manuscript, Quantifying the Influence of C-H···pi Interactions on Non-Aqueous Electrolyte Solubility.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.