Abstract
Metal-organic magnets (MOMs), modular magnetic materials where metal atoms are connected by organic linkers, are promising candidates for next-generation quantum technologies. MOMs readily form low-dimensional structures, and so are ideal systems to realise physical examples of key quantum models, including the Haldane phase, where a topological excitation gap occurs in integer-spin antiferromagnetic (AFM) chains. Thus far the Haldane phase has only been identified for S = 1, with S ≥ 2 still unrealised because the larger spin imposes more stringent requirements on the magnetic interactions. Here, we report the structure and magnetic properties of CrCl2(pym) (pym=pyrimidine), a new quasi-1D S = 2 AFM MOM. We show, using X-ray and neutron diffraction, bulk property measurements, density-functional theory calculations and inelastic neutron spectroscopy (INS) that CrCl2(pym) consists of AFM CrCl2 spin chains (J1 = −1.13(4) meV) which are weakly ferromagnetically coupled through bridging pym (J2 = 0.10(2) meV), with easy-axis anisotropy (D = −0.11(1) meV). We find that although small compared to J1, these additional interactions are sufficient to pre- vent observation of the Haldane phase in this material. Nevertheless, the proximity to the Haldane phase together with the modularity of MOMs suggests that layered Cr(II) MOMs are a promising family to search for the elusive S = 2 Haldane phase.
Supplementary materials
Title
Supplementary Information
Description
Supplementary Information
Actions