Role of Chain Length on (CnH2n+1NH3)2PbX4 (n=6, 8, 10, 12, 14, 16; X=Br and I) 2D Metal Halide Perovskites Physical Properties and Hydrophobicity

05 January 2023, Version 1

Abstract

We report here the preparation and characterization of two families of RP 2D perovskites including linear monoammonium cations, namely (CnH2n+1NH3)2PbBr4 and (CnH2n+1NH3)2PbI4 with n=4, 6, 8, 10, 12, 14 and 16. Structural and optical properties shows some similarities between the two series of samples with, however, distinct features related to the presence of phase transitions occurring when different ligands are present. Optical properties confirm a general blue-shift for the (CnH2n+1NH3)2PbBr4 system with respect to the (CnH2n+1NH3)2PbI4 family with the PL data showing two distinct variation paths for their excitonic emission behavior, one directly related to the chain length and another one depending on the ammonium coordination to the halogen atoms. Water stability of (CnH2n+1NH3)2PbBr4 and (CnH2n+1NH3)2PbI4 has been assessed and the results show an improved hydrophobicity by increasing the number of carbon atoms of the alkyl chain as well as by moving from iodide to bromide perovskites.

Keywords

metal halide perovskites
low-dimensional perovskites

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Experimental section and additional measurements
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.