Chemoselective, oxidation-induced macrocyclization of tyrosine-containing peptides

05 January 2023, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Inspired by Nature’s wide range of oxidation-induced modifications to install cross-links and cycles at tyrosine (Tyr) and other phenol-containing residue side chains, we report a Tyr-selective strategy for the preparation of Tyr-linked cyclic peptides. This approach leverages N4-substituted 1,2,4-triazoline-3,5-diones (TADs) as azo electrophiles that react chemoselectively with the phenolic side chain of Tyr residues to form stable C–N1-linked cyclic peptides. In the developed method, a precursor 1,2,4-triazolidine-3,5-dione moiety, also known as a urazole, is readily constructed at any free amine revealed on a solid-supported peptide. Once prepared, the N4-substituted urazole peptide is selectively oxidized using mild, peptide-compatible conditions to generate an electrophilic N4-substituted TAD peptide intermediate that reacts selectively under aqueous conditions with internal and terminal Tyr residues to furnish Tyr-linked cyclic peptides. The approach demonstrates good tolerance of native residue side chains and enables access to cyclic peptides ranging from 3- to 11-residues in size (16- to 38-atom-containing cycles). The identity of the installed Tyr-linkage, a stable covalent C–N1 bond, was characterized using NMR spectroscopy. Finally, we applied the developed method to prepare biologically active Tyr-linked cyclic pep-tides bearing the integrin-binding RGDf epitope.

Keywords

tyrosine
phenols
cyclic peptides
triazolinediones
macrocyclization
peptide cyclization

Supplementary materials

Title
Description
Actions
Title
Supporting Information: Chemoselective, oxidation-induced macrocyclization of tyrosine-containing peptides
Description
The supporting information contains experimental protocols and characterization data for the compounds presented in the manuscript.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.