Abstract
The resorcinol-terpene phytocannabinoid template is a privileged scaffold for the development of diverse therapeutics target-ing the endocannabinoid system. Axially chiral cannabinols (axCBNs) are unnatural cannabinols (CBNs) that bear an addi-tional C10 substituent, which twists the cannabinol biaryl framework out of planarity creating an axis of chirality. This “es-cape from flatland” is hypothesized to enhance both the physical and biological properties of cannabinoid ligands, thus ush-ering in the next generation of endocannabinoid system chemical probes and cannabinoid-inspired leads for drug develop-ment. In this full report, we describe the philosophy guiding the design of axCBNs as well as several synthetic strategies for their construction. We also introduce a second class of axially chiral cannabinoids inspired by cannabidiol (CBD), termed axially chiral cannabidiols (axCBDs). Finally, we provide an analysis of axially chiral cannabinoid (axCannabinoid) atro-pisomerism, which spans two classes (class 1 and 3 atropisomers), and provide first evidence that axCannabinoids retain—and in some cases, strengthen—affinity and functional activity at cannabinoid receptors. Together, these findings present a promising new direction for the design of novel cannabinoid ligands for drug discovery and exploration of the complex en-docannabinoid system.
Supplementary materials
Title
Supporting Information for Axially Chiral Cannabinoids: Design, Synthesis, and Cannabinoid Receptor Affinity
Description
Supporting Information includes experimental procedures and characterization data (1H NMR, 13C NMR, HRMS).
Actions
Supplementary weblinks
Title
corresponding author's website
Description
visit our website to learn more about our research.
Actions
View