Exploring battery cathode materials in the Li-Ni-O phase diagrams using structure prediction

29 December 2022, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The Li-Ni-O phase diagram contains several electrochemically active ternary phases. Many compositions and structures in this phase space can easily be altered by (electro-)chemical processes, yielding many more (meta-)stable structures with interesting properties. In this study, we use ab initio random structure searching (AIRSS) to accelerate materials discovery of the Li-Ni-O phase space. We demonstrate that AIRSS can efficiently explore structures (e.g. LiNiO2) displaying dynamic Jahn-Teller effects. A thermodynamically stable Li2Ni2O3 phase which reduces the thermodynamic stability window of LiNiO2 was discovered. AIRSS also encountered many dynamically stable structures close to the convex hull. Therefore, we confirm the presence of metastable Li-Ni-O phases by revealing their structures and properties. This work will allow Li-Ni-O phases to be more easily identified in future experiments and help to combat the challenges in synthesizing Li-Ni-O phases.

Keywords

Lithium-ion batteries
ab initio random structure searching

Supplementary materials

Title
Description
Actions
Title
Supplementary information
Description
Supplementary information for "Exploring battery cathode materials in the Li-Ni-O phase diagrams using structure prediction"
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.