Photoreactive CO2 Capture by a Zr-Nanographene MOF

29 December 2022, Version 1

Abstract

The mechanism of photochemical CO2 reduction to formate by PCN-136, a Zr-based metal-organic framework (MOF) that incorporates light-harvesting nanographene ligands, has been investigated using steady-state and time-resolved spectroscopy and density functional theory (DFT) calculations. The catalysis was found to proceed via a “photoreactive capture” mecha-nism, where Zr-based nodes serve to capture CO2 in the form of Zr-bicarbonates, while the nanographene ligands have a dual role to absorb light and to store one-electron equivalents needed for catalysis. We also find that the process occurs via a “two-for-one” route, where a single photon initiates a cascade of electron/hydrogen atom transfers from the sacrificial donor to the CO2-bound MOF. The mechanistic findings obtained here illustrate several advantages of MOF-based architectures in the molecular photocatalyst engineering and provide insights on ways to achieve high formate selectivity.

Supplementary materials

Title
Description
Actions
Title
Supporting Information for Photoreactive CO2 Capture by a Zr-Nanographene MOF
Description
Synthesis and characterization of MOFs, photochemical and computational details (PDF).
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.