Abstract
Herein we present the first double deprotonation of acetonitrile (CH3CN) using a bimetallic iron-aluminium complex. The products of this reaction contain an exceeding simple yet rare [CHCN]2– dianion moiety that bridges two metal fragments. DFT calculations suggest that the bonding to the metal centres is primarily ionic in nature. Mechanistic studies reveal the intermediacy of a monomeric [CH2CN]– complex, which has been characterised in-situ. Our findings provide an important example in which a bimetallic metal complex achieves a new type of reactivity not previously encountered with monometallic counterparts. The isolation of a [CHCN]2– dianion through simple deprotonation of CH3CN also offers the possibility of a establishing a broader chemistry of this motif.
Supplementary materials
Title
SI
Description
Details of experimental and computational methods along with characterisation data.
Actions
Title
cif
Description
XRD data
Actions
Title
xyz file
Description
Computational coordinates
Actions