Tuning Material Properties of Alkaline Anion Exchange Membranes Through Crosslinking: A Review of Synthetic Strategies and Property Relationships

19 December 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Alkaline anion exchange membranes (AAEMs) are an enabling component for next generation electrochemical applications, including alkaline fuel cells, alkaline water electrolyzers, CO2 electrochemical reduction, and flow batteries. While commercial systems, notably fuel cells, have traditionally relied on proton-exchange membranes (PEMs), hydroxide-ion conducting AAEMs hold promise as a way to reduce cost-per-device by enabling the use of less expensive non-platinum group electrodes and cheaper cell components. AAEMs have undergone significant material development over the past two decades resulting in substantial improvements in hydroxide conductivity, alkaline stability, and dimensional stability. Despite these advances, challenges still remain in the areas of durability, water management, high temperature performance, and selectivity. In this review we discuss crosslinking as a synthesis tool for tuning various AAEM material properties, such as water uptake, conductivity, alkaline stability, and selectivity, and we describe synthetic strategies for incorporating crosslinks during membrane fabrication.

Keywords

Alkaline Anion Exchange Membrane
Crosslinking
Fuel Cells
Polymer Synthesis
Water Electrolysis

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.