An aluminium imide as a transfer agent for the [NR]2- function via metathesis chemistry

13 December 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The reactions of a terminal aluminium imide with a range of oxygen-containing substrates have been probed with a view to developing its use as a novel main group transfer agent for the [NR]2- fragment. We demonstrate transfer of the imide moiety to [N2], [CO] and [Ph(H)C] units driven thermodynamically by Al-O bond formation. N2O reacts rapidly to generate the organoazide DippN3 (Dipp = 2,6-iPr2C6H3), while CO2 (under dilute reaction conditions) yields the corresponding isocyanate, DippNCO. Mechanistic studies, using both experimental and quantum chemical techniques, identify a carbamate complex K2[(NON)Al{k2-(N,O)-N(Dipp)CO2}]2 (formed via [2+2] cycloaddition) as an intermediate in the formation of DippNCO, and also in an alternative reaction leading to the generation of the amino-dicarboxylate complex K2[(NON)Al{k2-(O,O')-(O2C)2N(Dipp)}] (via the take-up of a second equivalent of CO2). In the case of benzaldehyde, a similar [2+2] cycloaddition process generates the metallacyclic hemi-aminal complex, Kn[(NON)Al{k2-(N,O)-(N(Dipp)C(Ph)(H)O}]n. Extrusion of the imine, PhC(H)NDipp, via cyclo-reversion is disfavoured thermally, due to the high energy of the putative aluminium oxide co-product, K2[(NON)Al(O)]2. However, addition of CO2 allows the imine to be released, driven by the formation of the thermodynamically more stable aluminium carbonate co-product, K2[(NON)Al(k2-(O,O')-CO3)]2.

Keywords

aluminium
imide
carbon dioxide
metathesis
metallacycle

Supplementary materials

Title
Description
Actions
Title
Supporting Information 1
Description
Complete synthetic and characterising data; representative spectra; crystallographic details; details of DFT calculations
Actions
Title
Supporting Information 2
Description
xyz files relating to DFT optimised structures
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.