Inkjet Printing of All Aqueous Inks to Flexible Microcapacitors for High-Energy Storage

09 December 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Due to the low energy density of commercial printable dielectrics, printed capacitors occupy a significant printing area and weight in fully printed electronics. It has long remained challenging to develop novel dielectric materials with printability and high energy-storage density. Here, we present the inkjet printing of all aqueous colloidal inks to dielectric capacitors composed of carbon nanotube electrodes and polyvinylidene fluoride (PVDF)-based dielectrics. The formulated dielectric ink is composed of PVDF latex particles coated by protonated chitosan molecules. Beyond the isoelectric point, the ink demonstrates excellent printability and film-forming properties. Chitosan serves as a strong binder to largely improve the printed film quality yet it introduces charged species. To confine the transport of these mobile charges, the printed PVDF@Chitosan layer was interlayered by a boron nitride nanosheet nanolayer. This layer is perpendicular to the electric field and serves as an efficient barrier to block the transport and the avalanche of charges, eventually leading to a recoverable energy density of 15 J/cm3 at 610 MV/m. This energy density represents the highest value among the waterborne dielectrics. It is also superior to most of the state-of-the-art printed dielectric materials from solvent-based formulations.

Keywords

Inkjet printing
aqueous inks
energy storage density
dielectrics
polymer composites

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.