Abstract
Traditional theories of long-range protein electron transfer describe the reaction rate in terms of the tunneling distance and the reaction free energy. They do not recognize two physical effects: (i) local wetting of the active site by hydration water and (ii) protein identity affecting the rate through dynamics and flexibility. We find, by molecular dynamics simulations, a significant, ~25 times, slowing down of the rate of protein electron transfer upon deuteration. H/D substitution changes the rate constant pre-exponential factor in the regime of electron transfer controlled by medium dynamics. Switching from light to heavy water increases the effective medium relaxation time. The effect is caused by both a global change in the flexibility of the protein backbone and locally stronger hydrogen bonds to charged residues.
Supplementary materials
Title
Effect of water deuteration on protein electron transfer. Supporting Information
Description
Simulation protocol, additional data, and calculations of the protein dynamics and rates of electron transfer.
Actions