Effect of water deuteration on protein electron transfer

06 December 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Traditional theories of long-range protein electron transfer describe the reaction rate in terms of the tunneling distance and the reaction free energy. They do not recognize two physical effects: (i) local wetting of the active site by hydration water and (ii) protein identity affecting the rate through dynamics and flexibility. We find, by molecular dynamics simulations, a significant, ~25 times, slowing down of the rate of protein electron transfer upon deuteration. H/D substitution changes the rate constant pre-exponential factor in the regime of electron transfer controlled by medium dynamics. Switching from light to heavy water increases the effective medium relaxation time. The effect is caused by both a global change in the flexibility of the protein backbone and locally stronger hydrogen bonds to charged residues.

Keywords

electron transfer
protein
kinetic isotope effect
dynamics

Supplementary materials

Title
Description
Actions
Title
Effect of water deuteration on protein electron transfer. Supporting Information
Description
Simulation protocol, additional data, and calculations of the protein dynamics and rates of electron transfer.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.