Electrochemically Triggered Hole-catalytic Reaction at a Polymer Chain

02 December 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Organic electrosynthesis enables clean, sustainable, and unique molecular transformations; however, its application to polymeric materials is restricted by their sterically demanding nature, which hinders quantitative electron transfer at the electrode surface. Herein, we report, for the first time, a hole-catalytic reaction triggered via anodic oxidation as a key strategy for achieving a high degree of electrochemical transformation in polymeric materials. Careful molecular and reaction design enabled hole-catalytic benzylic substitution, with an 88% degree of substitution, in a sterically hindered polymer, via an electrolytically generated radical cation. Mechanistic studies revealed that through-space delocalization of holes between neighboring aromatic systems contributes significantly to the stabilization of the radical cation species and intra-chain hole transfer. Thus, this study establishes hole catalysis as an effective strategy for the electrochemical transformation of polymers, which may aid the design of sustainable electrosynthetic strategies for functional macromolecules.

Keywords

Electrosynthesis
Hole catalysis
Polymer reaction

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Materials, synthetic procedures, experimental procedures, computation details, and 1H, 13C, and 19F NMR spectra for various compounds
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.