Origins of Offset-Stacking in Porous Frameworks

01 December 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Parallel-displaced pi-stacking in the benzene dimer and larger polycyclic aromatic hydrocarbons is driven by competition between dispersion and exchange-repulsion interactions. The present work examines whether the same is true in porous frameworks that exhibit stacking interactions, including the [18]annulene dimer, porphyrin dimer, and several models of the covalent organic framework known as COF-1. Interaction energies and their components are computed using extended symmetry-adapted perturbation theory along two-dimensional scans representing slip-stacking. As in the polycyclic aromatic hydrocarbons studied previously, we find that the van der Waals interaction potential (defined as the sum of dispersion and Pauli repulsion) drives the system into a slip-stacked geometry. Electrostatics is a relatively small component of the total interaction energy. In the case of COF-1, the van der Waals potential drives the conformational preference whether or not a solvent molecule intercalates into the framework, although the presence of the guest (mesitylene) molecule substantially limits the low-energy slip-stacking configurations that are available. Even when the COF-1 pore is empty, a modest lateral offset of < 1.5 A is preferred, which is small compared to the pore size.

Keywords

covalent organic framework
pi stacking
energy decomposition analysis
van der Waals forces
intermolecular interactions
electrostatics

Supplementary materials

Title
Description
Actions
Title
Supporing Data
Description
Additional data and analysis
Actions
Title
Geometries
Description
Coordinates for all structures considered
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.