Structure, Properties, and Reactivity of Polyoxocationic Zirconium and Hafnium Clusters

24 November 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Hexameric tetravalent zirconium and hafnium molecular metal oxides clusters are key building blocks of many metal-organic frameworks; however, the chemical space to form all possible MOF nodes is vast, containing many potential new clusters. Our computational study provides a complete picture of the structure, properties, and reactivity of two tetrameric zirconium and hafnium [M4(μ2-η2:η2-O2)x(μ2-OH)8-2x(H2O)16]8+ polycationic clusters. The electronic structure of the studied species has the characteristic polyoxometalate oxygen-based and metal-based bands in the valence region. The energetics for the evolution of pure metal clusters into mixed-metal clusters revealed that only the incorporation of zirconium into hafnium clusters is thermodynamically favorable. We confirmed that the incorporation of up to four peroxide ligands is thermodynamically favorable; however, the experimental absence of rich peroxide species with three or more peroxides is attributed to their thermal degradation. The mechanism for peroxide incorporation involves the partial dissociation of the cluster rather than complete dissociation.

Keywords

Polyoxocationic
Zirconium
Hafnium
Density Functional Theory

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.