Dissociation Rate Calculation via Constant-force Steered Molecular Dynamics Simulation

17 November 2022, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Steered molecular dynamics (SMD) simulations have been applied to molecular dissociation events by adding a harmonic force to molecules. Further, molecules are pulled at a constant velocity. However, instead of the constant-velocity pulling, we use a constant force: the constant-force SMD (CF-SMD) simulation. The CF-SMD simulation employs a constant force to reduce the activation barrier of molecular dissociation, thereby enhancing the dissociation event. Here, we present the capability of the CF-SMD simulation to estimate the dissociation rate at equilibrium. We performed all-atom CF-SMD simulations for NaCl and protein–ligand systems, producing dissociation rates at various forces. We extrapolated these values to the dissociation rate without a constant force using the Dudko–Hummer–Szabo model. We demonstrate that the CF-SMD simulations and the model predicted the dissociation rate in equilibrium. A CF-SMD simulation is a powerful tool for estimating the dissociation rate in a direct and computationally efficient manner.

Keywords

molecular dynamics
kinetics
nonequilibrium
biomolecule

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Figure S1-6; Table S1-5
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.