The role of energy density for grid-scale batteries

17 November 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Deep decarbonization of the power grid is only possible with mass-scale energy storage to overcome the spatiotemporal mismatch between supply from renewables and demand. Aqueous flow batteries fully decouple power and energy elements and can thus easily be scaled, a prerequisite for cheap long-duration energy storage, but low energy density is generally considered a key limitation of the technology. To date, the role of this metric for grid-scale installations has not been quantified, a crucial step for guiding further development of this potential trillion-dollar market. Here, we analyze the footprint of forty-four MWh-scale battery energy storage systems via satellite imagery and calculate their energy capacity per land area in kWh m−2, demonstrating that energy density is not critical for such installations and that the importance of this metric for grid-scale batteries is heavily overstated in academia. We suggest that a unique advantage of aqueous flow batteries, due to their intrinsic safety and vertical scalability, is their ability to provide reliable power in space-restricted sites, and we show that even with current chemistries and modest assumptions about storage tank sizes and footprints, areal energy densities five times as high as with the average lithium-ion based system can be achieved.

Keywords

Energy Storage
Grid
Flow Battery
Battery
Lithium Ion
Long Duration Energy Storage

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
The Supplementary Information contains Methods, Figures M1-M2, Supplementary Discussions, descriptions of battery energy storage systems, Figures S1-S65, and Tables S1-3.
Actions
Title
Locations of studied batteries
Description
A Google Earth file (.kmz) with pinned locations for all battery energy storage systems discussed here.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.