Autonomous Soft Robots Empowered by Chemical Reaction Networks

04 November 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Hydrogel actuators are important for designing stimuli-sensitive soft robots. They generate mechanical motion by exploiting compartmentalized (de)swelling in response to a stimulus. However, classical switching methods, such as manually lowering or increasing the pH, cannot provide more complex autonomous motions. By coupling an autonomously operating pH-flip with programmable lifetimes to a hydrogel system containing pH-responsive and non- responsive compartments, autonomous forward and backward motion as well as more complex tasks, such as interlocking of “puzzle pieces” and collection of objects are realized. All operations are initiated by one simple trigger and the devices operate in a “fire and forget” mode. More complex self-regulatory behavior is obtained by adding chemo-mechano-chemo feedback mechanisms. Due to its simplicity, this method shows great potential for the autonomous operation of soft grippers and metamaterials.

Keywords

soft robotics
chemical reaction network
life-like materials
hydrogels
pH Feedback

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Experimental Details and Additional Information
Actions
Title
Video S1
Description
Video S1
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.