Cycling Performance and Mechanistic Insights of Ferricyanide Electrolytes in Alkaline Redox Flow Batteries

31 October 2022, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Ferrocyanide, such as K4[Fe(CN)6], is one of the most popular cathode electrolyte (catholyte) materials in redox flow batteries. However, its chemical stability in alkaline redox flow batteries has been debated. Mechanistic understandings at the molecular level are necessary to elucidate the cycling stability of K4[Fe(CN)6] and its oxidized state (K3[Fe(CN)6]) based electrolytes and guide their proper use in flow batteries for energy storage. Herein, we presented a suite of battery tests and spectroscopic studies to understand the chemical stability of K4[Fe(CN)6] and its charged state, K3[Fe(CN)6], at a variety of conditions. In a strong alkaline solution (pH 14), it was found that the balanced K4[Fe(CN)6]/K3[Fe(CN)6] half-cell experienced a fast capacity decay under dark conditions. Our studies revealed the chemical reduction of K3[Fe(CN)6] by a graphite electrode leads to the charge imbalance in the half-cell cycling and is the major cause of the observed capacity decay. In addition, at pH 14, K3[Fe(CN)6] undergoes a slow CN‒/OH‒ exchange reaction. The dissociated CN‒ ligand can chemically reduce K3[Fe(CN)6] to K4[Fe(CN)6], and it is converted to cyanate (OCN‒) and further, decompose into CO32‒ and NH3. Ultimately, the irreversible chemical conversion of CN‒ to OCN‒ leads to the irreversible decomposition of K4/K3[Fe(CN)6] at pH 14.

Supplementary materials

Title
Description
Actions
Title
SI
Description
Supporting information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.