A Unified System for Molecular Property Predictions: Oloren ChemEngine and its Applications

20 October 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Molecular property predictors form the core of any AI-enabled drug discovery strategy. In recent years, there has been significant research in this area, resulting in the development of powerful predictors and representations. However, these diverse predictors have different software interfaces, dependencies, and levels of documentation. Due to lack of a unified API for molecular property prediction, an AI-enabled drug discovery endeavor often necessitates a tangled web of scripts, notebooks, and configuration. This makes it is needlessly difficult to share, distribute, and manage predictors, to ensemble predictors together, and to provide universal AI explainability tools. To this end, we present Oloren ChemEngine (OCE), an open-source Python library with a unified API for molecular property predictors with simplified model management and reproducibility. Using OCE, we create models which achieve superior performance on ADME/Tox prediction tasks by ensembling and integrating many different molecular property prediction methods. We include model-agnostic uncertainty quantification using calibrated confidence intervals and probabilities as well as interpretability using counterfactual methods.

Keywords

Artificial Intelligence
Molecular Property Prediction
ADME/Tox Modeling
Graph Neural Networks
Machine Learning
QSAR Modeling
Bioactivity Prediction
Interpretability
Uncertainty Quantification
Software
Open-source

Supplementary materials

Title
Description
Actions
Title
Benchmark Model Parameters
Description
Supporting Information. Model parameter strings for models named in Table 1.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.