A Decacationic Ferrocene-Based Metallostar

20 October 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Decacationic metallostars have been prepared by the reaction of permercurated ferrocene FeC10(HgO2CCF3)10 with superacidic (C5F5NH)(SbF6) (pKa = −11 estimated in H2O) in multigram scale. In the resulting compound, [FeC10Hg10(NC5F5)n][SbF6]10, the labile pentafluoropyridine ligands are readily displaced by acetonitrile (MeCN) or tetrahydrothiophene (THT). In the X-ray structure of [FeC10Hg10(THT)10][SbF6]10 ‧ 24 MeCN no cation-anion contacts between mercury and fluorine were observed. Moreover, cyclic voltammetry measurements of [FeC10(Hg(MeCN))10]10+ and [FeC10(Hg(THT))10]10+ revealed a (quasi)reversible one-electron oxidation of Fe(II) to Fe(III). From the reaction of [FeC10(Hg(MeCN))10]10+ with MoF6 as oxidant the ferrocenium cation [FeC10(Hg(MeCN))10]11+ was obtained and characterized via single crystal XRD. These electrophilic metallostars are promising potential building blocks for the synthesis of dendritic architectures containing a robust, tenfold functionalized ferrocene core.

Keywords

ferrocene
metallocenes
mercury
metal-metal interactions
metallostar

Supplementary materials

Title
Description
Actions
Title
A Decacationic Ferrocene-Based Metallostar
Description
Decacationic metallostars have been prepared by the reaction of permercurated ferrocene FeC10(HgO2CCF3)10 with superacidic (C5F5NH)(SbF6) (pKa = −11 estimated in H2O) in multigram scale. In the resulting compound, [FeC10Hg10(NC5F5)n][SbF6]10, the labile pentafluoropyridine ligands are readily displaced by acetonitrile (MeCN) or tetrahydrothiophene (THT). In the X-ray structure of [FeC10Hg10(THT)10][SbF6]10 ‧ 24 MeCN no cation-anion contacts between mercury and fluorine were observed. Moreover, cyclic voltammetry measurements of [FeC10(Hg(MeCN))10]10+ and [FeC10(Hg(THT))10]10+ revealed a (quasi)reversible one-electron oxidation of Fe(II) to Fe(III). From the reaction of [FeC10(Hg(MeCN))10]10+ with MoF6 as oxidant the ferrocenium cation [FeC10(Hg(MeCN))10]11+ was obtained and characterized via single crystal XRD. These electrophilic metallostars are promising potential building blocks for the synthesis of dendritic architectures containing a robust, tenfold functionalized ferrocene core.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.