Abstract
Gelation offers a powerful strategy to assemble plasmonic nanocrystal networks incorporating both distinctive optical properties of constituent building blocks and customizable collective properties. Beyond what a single-component assembly can offer, characteristics of nanocrystal networks can be tuned in a broader range when two or more components are intimately combined. Here, we demonstrate mixed nanocrystal gel networks using thermoresponsive metal-terpyridine links that enable
rapid gel assembly and disassembly with thermal cycling. Plasmonic indium oxide nanocrystals with different sizes, doping concentrations, and shapes are reliably intermixed in linked gel assemblies, exhibiting collective infrared absorption that reflects the contributions of each component while also deviating systematically from a linear combination of the spectra for single-component gels. We extend a many-bodied, mutual polarization method to simulate the optical response of mixed nanocrystal
gels, reproducing the experimental trends with no free parameters and revealing that spectral deviations originate from cross-coupling between nanocrystals with distinct
plasmonic properties. Our thermoreversible linking strategy directs the assembly of mixed nanocrystal gels with continuously tunable far- and near-field optical properties
that are distinct from those of the building blocks or mixed close-packed structures.
Supplementary materials
Title
Supplementary Materials
Description
Synthetic details, instrumentation, simulation methods, supplementary tables and figures.
Actions
Title
Supplementary Video
Description
Thermoreversible gelation of a mixed nanocrystal gel.
Actions