Spin–orbit couplings within spin-conserving and spin-flipping time-dependent density functional theory: Implementation and benchmark calculations

17 October 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We present a new implementation for computing spin-orbit couplings (SOCs) within time-dependent density-functional theory (TD-DFT) framework in the stan- dard spin-conserving formulation as well in the spin-flip variant (SF-TD-DFT). This approach employs the Breit-Pauli Hamiltonian and Wigner-Eckart’s theorem ap- plied to the reduced one-particle transition density matrices, together with the spin–orbit mean-field (SOMF) treatment of the two-electron contributions. We use state-interaction procedure and compute the SOC matrix elements using zero-order non-relativistic states. Benchmark calculations using several closed-shell organic molecules, diradicals, and a single-molecule magnet (SMM) illustrate the efficiency of the SOC protocol. The results for organic molecules (described by standard TD- DFT) show that SOCs are insensitive to the choice of the functional or basis sets, as long as the states of the same characters are compared. In contrast, the SF-TD- DFT results for small diradicals (CH2, NH+2 , SiH2, and PH+2 ) show strong functional dependence. The spin-reversal energy barrier in a Fe(III) SMM computed using non- collinear SF-TD-DFT (PBE0, ωPBEh/cc-pVDZ) agrees well with the experimental estimate.

Keywords

spin orbit coupling
tddft
sf-tddft
single molecule magnets
spin–orbit mean-field
Breit-Pauli Hamiltonian

Supplementary materials

Title
Description
Actions
Title
Spin–orbit couplings within spin-conserving and spin-flipping time-dependent density functional theory: Implementation and benchmark calculations Supplemental Information
Description
Includes supplementary information for the manuscript: Spin–orbit couplings within spin-conserving and spin-flipping time-dependent density functional theory. It provides cartesian coordinates and excited state analysis.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.