Reversible Alkaline Hydrogen Evolution and Oxidation Reactions Using Ni–Mo Catalysts Supported on Carbon

17 October 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Unitized regenerative fuel cells based on hydroxide exchange membranes are attractive for long duration energy storage. This mode of operation depends on the ability to catalyze hydrogen evolution and oxidation reversibly, and ideally using nonprecious catalyst materials. Here we report the synthesis of Ni–Mo catalyst composites supported on oxidized Vulcan carbon (Ni–Mo/oC) and demonstrate their performance for reversible hydrogen evolution and oxidation. For the hydrogen evolution reaction, we observed mass-specific activities exceeding 80 mA/mg at 100 mV overpotential, and additional measurements using hydroxide exchange membrane electrode assemblies yielded full cell voltages that were only ~100 mV larger for Ni–Mo/oC cathodes compared to Pt–Ru/C at current densities exceeding 1 A/cm2. For hydrogen oxidation, Ni–Mo/oC films required <50 mV overpotential to achieve half the maximum anodic current density, but activity was limited by internal mass transfer and oxidative instability. Nonetheless, estimates of the mass-specific exchange current for Ni–Mo/oC from micropolarization measurements showed its hydrogen evolution/oxidation activity is within 1 order of magnitude of commercial Pt/C. Density functional theory calculations helped shed light on the high activity of Ni–Mo composites, where the addition of Mo leads to surface sites with weaker H-binding energies than pure Ni. These calculations further suggest that increasing the Mo content in the subsurface of the catalyst would result in still higher activity, but oxidative instability remains a significant impediment to high performance for hydrogen oxidation.

Keywords

Hydrogen Evolution
Hydrogen Oxidation
Nickel
Molybdenum
Fuel Cell
Electrolyzer
Hydroxide Exchange Membrane
Unitized Regenerative Fuel Cell
Membrane Electrode Assembly

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.