Cationic Tetrylene-Iron(0) Complexes: Access Points for Cooperative, Reversible Dihydrogen Activation and Open-Shell Iron(-I) Ferrato-Tetrylenes

18 October 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The oxidative addition of catalytically relevant small molecules in molecular iron complexes poses a considerable challenge in achieving ‘precious metal catalysis’ utilizing this Earth abundant metal. Here, we show that non-innocent ligands based upon cationic heavier tetrylenes, EII (E = Ge, Sn), can work in synergy with a reactive iron center for the oxidative cleavage of inert bonds. Specifically, the open-shell cationic stannylene-iron(0) complex 4 (4 = [PhiPDippSn·Fe·IPr]+; PhiPDipp = {[Ph2PCH2Si(iPr)2](Dipp)N}; Dipp = 2,6-iPr2C6H3; IPr = [(Dipp)NC(H)]2C:) cleaves dihydrogen under very mild condi-tions (1.5 bar, 298K), in forming bridging hydrido-complex 6, which features a [Sn-(μ-H)2-Fe] core. This reaction is readily reversible, with hydrogen being entirely extruded after simple freeze-thaw degassing of reaction mixtures, regenerating 4. Computational investigation of the mechanism incites the ne-cessity of both the Fe0 and SnII centers in the key H-H bond scis-sion step. The related GeII system, 3, does not activate dihydro-gen. However, one-electron reduction of this species leads to clean oxidative addition of one C-P linkage of the PhiPDipp ligand in an intermediary Fe-I complex, leading to FeI phosphide species 7. In contrast, the same one-electron reduction reaction of 4 gives facile access to the iron(-I) ferrato-stannylene, 8. This presents strong evidence for the intermediacy of such a species in the reduction of 3, and represents an example of a covalently bound formal iron(-I) compound. EPR spectroscopy, SQUID magnetometry, and supporting computational analysis strongly indicate the high localization of electron spin density at Fe-I in this unique d9-iron complex.

Keywords

Cooperative bond activation
Single-Centre Ambiphiles
Low-valent main group
Reversible bond activation
Low-valent Iron
Cationic tetrylenes

Supplementary materials

Title
Description
Actions
Title
Supporting info
Description
Experimental details, spectra, crystallographic details, and computational details
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.