Metal surfaces catalyze polarization-dependent hydride transfer from H2

11 October 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Hydride transfer is a critical elementary reaction step that spans biological catalysis, organic synthesis, and energy conversion. Conventionally, hydride transfer reactions are carried out using (bio)molecular hydride reagents under homogeneous conditions. Herein, we report a conceptually distinct heterogeneous hydride transfer reaction via the net electrocatalytic hydrogen reduction reaction (HRR) which reduces H2 to hydrides. The reaction proceeds by H2 dissociative adsorption on a metal electrode to form surface M−H species, which are then negatively polarized to drive hydride transfer to molecular hydride acceptors with up to 95% Faradaic efficiency. We find that the hydride transfer reactivity of surface M−H species is highly tunable and its thermochemistry depends on the applied potential in a Nernstian fashion. Thus, depending on the electrode potential, we observe that the thermodynamic hydricity of Pt−H on the same Pt electrode can span a range of >40 kcal mol−1. This work highlights the critical role of electrical polarization on heterogeneous hydride transfer reactivity and establishes a strategy for accessing reactive hydrides directly from H2.

Keywords

electrocatalysis
hydride transfer
hydrogen reduction reaction
H2 catalysis

Supplementary materials

Title
Description
Actions
Title
SI
Description
SI
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.