Assessing ternary materials for fluoride-ion batteries

10 October 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Although lithium‐ion batteries have transformed energy storage, there is a need to develop battery technologies with improved performance. Fluoride‐ion batteries (FIBs) may be promising alternatives in part due to their high theoretical energy density and natural elemental abundance. However, electrode materials for FIBs, particularly cathodes, have not been systematically evaluated, limiting rapid progress. Here, we evaluate ternary fluorides from the Materials Project crystal structure database to identify promising cathode materials for FIBs. Structures are further assessed based on stability and whether fluorination/defluorination occurs without unwanted disproportionation reactions. Properties are presented for pairs of fluorinated/defluorinated materials including theoretical energy densities, cost approximations, and bandgaps. We aim to supply a dataset for extracting property and structural trends of ternary fluoride materials that may aid in the discovery of next‐generation battery materials.

Keywords

battery
cathode
fluoride-ion battery
energy density
computation
hierarchical search

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.