ProteomicsML: An Online Platform for Community-Curated Datasets and Tutorials for Machine Learning in Proteomics

05 October 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Dataset acquisition and curation are often the hardest and most time-consuming parts of a machine learning endeavor. This is especially true for proteomics-based LC-IM-MS datasets, due to the high-throughput data structure with high levels of noise and complexity between raw and machine learning-ready formats. While predictive proteomics is a field on the rise, when predicting peptide behavior in LC-IM-MS setups, each lab often uses unique and complex data processing pipelines in order to maximize performance, at the cost of accessibility and reproducibility. For this reason we introduce ProteomicsML, an online resource for proteomics-based datasets and tutorials across most of the currently explored physicochemical peptide properties. This community-driven resource makes it simple to access data in easy-to-process formats, and contains easy-to-follow tutorials that allow new users to interact with even the most advanced algorithms in the field. ProteomicsML provides datasets that are useful for comparing state-of-the-art (SOTA) machine learning algorithms, as well as providing introductory material for teachers and newcomers to the field alike. The platform is freely available on https://www.proteomicsml.org/ and we welcome the entire proteomics community to contribute to the project at https://github.com/proteomicsml/.

Keywords

machine learning
deep learning
proteomics
educational platform
community platform
bioinformatics

Supplementary materials

Title
Description
Actions
Title
Supplementary Table 1
Description
Proteomics ML publications along with links to the ProteomeXchange datasets used for training or testing.
Actions
Title
Supplementary Table 2
Description
Public ProteomeXchange datasets that have been used for ML training or benchmarking.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.