Translating L-peptides into non-canonical linear and macrocyclic peptides

30 September 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Peptide-based drug discovery efforts has made significant advances in the recent past, enabling targeting of previously undruggable protein-protein interactions. Current efforts of high-throughput library screening involves L-peptide libraries, while non-canonical linear and macrocyclic peptides have been shown to be more metabolically stable, while having similar or higher biological activity. Here, we present a method to translate L-peptides into their non-canonical variants using a genetic algorithm-based approach. We optimize against a dual objective function of matching the chemical similarity of the mutated sequence to the reference L-peptide, and maximizing the binding affinity, characterized by the docking score against the target protein. We demonstrate the applicability of this method by discovering previously unknown non-canonical linear and macrocyclic peptides with high binding affinity against DRD2 kinase inhibitor. This work will provide a chemistry-informed approach for the discovery of non-canonical peptides from L-peptide library screening, thereby accelerating drug development efforts.

Keywords

peptides
stereochemistry
chemical similarity
artificial intelligence
cheminformatics
genetic algorithm

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.