The binding affinity of monoalkyl phosphinic acid ligands towards nanocrystal surfaces

29 September 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We recently introduced monoalkyl phosphinic acids as a ligand class for nanocrystal synthesis. Their metal salts have interesting reactivity differences with respect to metal carboxylates and phosphonates, and provide cleaner work-up compared to phosphonates. However, there is little known about the surface chemistry of nanocrystals with monoalkyl phosphinate ligands. Here, we probe the relative binding affinity of monoalkyl phosphinate ligands with respect to other X-type ligands. We perform competitive ligand exchange reactions with carboxylate and phosphonate ligands at the surface of HfO2, CdSe, and ZnS nanocrystals. We monitor the ligand shell composition by solution 1H and 31P NMR spectroscopy. Using a monoalkyl phosphinic acid with an ether functionality, we gain an additional NMR signature, apart from the typical alkene resonance in oleic acid and oleylphosphonic acid. We find that carboxylate ligands are easily exchanged upon exposure to monoalkyl phosphinic acids, whereas an equilibrium is reached between monoalkyl phosphinates and phosphonates, slightly in the favour of phosphonate (K = 2). Phosphinic acids have thus an intermediate binding affinity between carboxylic acids and phosphonic acids for all nanocrystals studied. These results enable the sophisticated use of monoalkyl phosphinic acids for nanocrystal synthesis and for post-synthetic surface engineering.

Keywords

nanocrystals
ligands
phosphinic acids
surface chemistry

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Additional 1H, 31P, and DOSY NMR spectra, TEM images, UV-Vis spectra, additional ligand exchange reactions and titrations, tables with calculated equilibrium constants, equilibrium constant calculations, and NMR spectra of synthesized compounds.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.