Energy loss for droplets bouncing off superhydrophobic surfaces

26 September 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A water droplet can bounce off superhydrophobic surfaces multiple times before coming to a stop. The energy loss for such droplet rebounds can be quantified by the ratio of the rebound speed UR and the initial impact speed UI , i.e., its restitution coefficient e = UR/UI . Despite much work in this area, there is still incomplete mechanistic explanation for the energy loss for rebounding droplets. Here, we measured e for sub-millimetric and millimetric sized droplets impacting two different superhydrophobic surfaces over a wide range of UI = 4–400 cm s−1. We proposed simple scaling laws to explain the observed non-monotonic dependence of e on UI . In the limit of low UI , energy loss is dominated by contact-line pinning and e is sensitive to the surface wetting properties, in particular to contact angle hysteresis Δcos θ of the surface. In contrast, in the limit of high UI , e is dominated by inertial-capillary effects and does not depend on Δcos θ.

Keywords

superhydrophobic
droplet
rebound
restitution coefficient

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.