Atomistic Origins of Biomass Recalcitrance in Organosolv Pretreatment

23 September 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Secondary plant cell walls are made from three common biopolymers, cellulose, lignin, and hemicellulose, representing a critical feedstock for sustainable biomaterial production. Separating lignocellulosic biomass components for use in tailored sustainable energy and materials applications is challenging, as the biopolymers are in close proximity within the plant secondary cell wall. Organic solvents are used to pretreat recalcitrant biomass and separate the interacting polymers, solubilizing the lignin fraction for lignin-first valorization approaches. However, no single organosolv pretreatment approach has proven superior for heterogeneous biomass samples. Simulation offers a complementary atomic view into interactions between biomass components, resolving mechanistic hypotheses for how biomass composition influences separations processes. Using molecular dynamics simulations, we quantify lignin-cellulose interactions through binding free energies determined from 300 lignin polymer models in nine solvent environments, across four crystalline cellulose faces, with an aggregate simulation time of nearly 154 microseconds. The binding free energy determined from simulation categorizes the solvents. For poor lignin solvents, all lignin polymers bind strongly to cellulose. By contrast, polar protic solvents such as methanol and ethanol favor the unbinding between lignin and cellulose in all conditions, regardless of charge for the lignin monomer tested. Aprotic organic solvents separate lignin from cellulose only for uncharged lignin monomers, with charged lignin monomers associating to cellulose. While polar protic solvents are most effective at breaking apart lignin-cellulose interactions for charged lignin species, solvent dynamics highlight that there is no single optimal solvent to facilitate lignin-cellulose separation, particularly as some solvents demonstrate greater effectiveness for skewed S:G ratios. Instead, the optimal solvent for a given lignin sample will depend on the lignin compound and the net charge for the lignin polymers.

Keywords

Lignocellulosic interaction
Biomass recalcitrance
Organosolv pretreatment
Free energy
molecular dynamics

Supplementary materials

Title
Description
Actions
Title
SI Part 1
Description
Pages 1-50
Actions
Title
SI Part 2
Description
Pages 51-100
Actions
Title
SI Part 3
Description
Pages 101-150
Actions
Title
SI Part 4
Description
Pages 151-end
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.