Abstract
Understanding how insect-derived biomaterials interact with light has led to new advances and interdisciplinary insights in entomology and physics. Leafhoppers are insects that coat themselves with highly ordered biological nanostructures known as brochosomes. Brochosomes are thought to provide a range of protective properties to leafhoppers, such as hydrophobicity and anti-reflectivity, which has inspired the development of synthetic brochosomes that mimic their structures. Despite recent progress, the ultra-high anti-reflective properties of brochosome structures are not fully understood. In this work, we use a combination of experiments and computational modeling to understand the structure-, material-, and polarization-dependent optical properties of brochosomes modeled on the geometries found in three leafhopper species. Our results show that that Fano resonance is responsible for the ultra-high anti-reflectivity of brochosomes. Whereas prior work has focused on computational modeling of idealized pitted particles, our work shows that light-matter interactions with brochosome structures can be tuned by varying the geometry of their cage-like nanoscale features and by changing the arrangement of multi-particle assemblies. Broadly, this work establishes principles for the guided design of new optically active materials inspired by these unique insect nanostructures.
Supplementary materials
Title
Supplementary file with figures and additional discussion
Description
Supplementary file with figures and additional discussion
Actions