Improving the Colloidal Stability of PEGylated BaTiO3 Nanoparticles with Surfactants

12 September 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Barium titanate, BaTiO3, nanoparticles (NPs) have been widely used as a ferroelectric/piezoelectric/pyroelectric material in the electronic-optical ceramic industry. However, the stability of BaTiO3 NP suspension are a matter of concern for their advanced applications in wet-ceramic manufacturing, imaging, and electrorheological fluids. In this study, we investigated the effect of three different surfactants (sodium dodecylbenzenesulfonate (anionic), cetyltrimethylammonium bromide (cationic), and sorbitan monooleate (non-ionic)) on the stability of PEGylated BaTiO3 nanoparticles in two solvents (water and ethylene glycol) by means of dynamic light scattering, ζ potential, UV-visible spectroscopy, scanning electron microscopy, and visual observation. Our findings indicate that the anionic surfactant acted as the best stabilizer for BaTiO3 nanofluids, while the cationic surfactant was the least favourable stabilizer in both water and ethylene glycol, due to the balance between attraction and repulsive forces. The results of this research provide a simple and effective approach to control and improve the colloidal stability of BaTiO3 nanoparticles.

Keywords

nanoparticles
barium titanate
surfactants

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.