(Alkali metal)decarboxylation reaction: Lone pair participation and design of diastereoselective enolate formation

02 September 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Recently, we demonstrated that, contrary to the explanation in most textbooks on organic chemistry, the mechanism of the decarboxylation reaction can be more appropriately explained by the orbital theory, since the most electrondonating bond orbital, i.e., the highest occupied bond orbital, in a carbonyl group should be the lone pair on the oxygen, not the .pi.-bond orbital of the C=O bond. Thus, the electron moves from the lone pair to the .sigma.*-orbital of the OH bond, not from the .pi.-orbital of the carbonyl group. With this insight, we succeeded in developing the boradecarboxylation reaction. In our initial screening, the alkali metals were not so promising since they decomposed in TSs. However, the calculations were performed without considering solvation in the gas phase. We supposed that this was influenced by the strongly ionic character of the alkali metal ions. We reconsidered the calculations including those involv-ing the solvent molecules, dimethyl ether (DME) and THF.

Keywords

Decarboxylation reaction
Mechanism in orbital theory perspective
Lone pair participation
(Alkali metal)decarboxylation

Supplementary materials

Title
Description
Actions
Title
Computational results
Description
Cartesian coordinates for the optimized structures
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.