Abstract
Predicting the reaction kinetics, i.e., how fast a reaction can happen in a solution, is essential information for many processes, such as industrial chemical manufacturing, refining, synthesis and separation of petroleum products, environmental processes in air and water, biological reactions in cells, biosensing, and drug delivery. Collision theory was originally developed to explain the reaction kinetics of gas reactions with no dilution. For a reaction in a diluted inert gas solution or a diluted liquid solution, diffusion often dominates the collision process. Thus, it is necessary to include diffusion in such a calculation. Traditionally the classical Smoluchowski rate is used as a starting point to predict the collision frequency of two molecules in a diluted solution. In this report, a different collision model is derived from the adsorption of molecules on a flat surface and used to explain the collision frequency more intuitively than the Smoluchowski model in diluted solution.