Cu-Mediated Thianthrenation and Phenoxathiination of Arylborons

19 August 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Great success in synthetic chemistry is motivated by the development of novel and reactive linchpins for carbon-carbon and carbon-heteroatom bond formation reactions, that has dramatically altered chemists’ approach to building molecules. Herein, we report the readily synthesis of aryl sulfonium salts, a novel versatile electrophilic linchpin, via an unprecedented Cu-mediated thianthrenation and phenoxathiination of commercially available arylborons with thianthrene and phenoxathiine, providing a series of aryl sulfonium salts in high efficiency. More importantly, by leveraging the sequential Ir-catalyzed C–H borylation and Cu-mediated thianthrenation of arylborons, the formal thianthrenation of arenes are also achieved. As the Ir-catalyzed C–H borylation with undirected arenes normally occurred at the less steric hindrance position, thus providing a complementary method for thianthrenation of arenes in comparison with the electrophilic thianthrenation. This process is capable of late-stage functionalization of a series of pharmaceuticals, which might find wide synthetic applications in both industry and academic sectors.

Keywords

Thianthrenation
Phenoxathiination
Sulfonium Salts
Arylboron
Copper

Supplementary materials

Title
Description
Actions
Title
Supplementary Materials
Description
Data, NMR spectra
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.