Radical Redox Cycloadditions: A General Light-Driven Meth-od for the Synthesis of Saturated Heterocycles

05 August 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We introduce here a novel two-component annulation strategy that provides access to a diverse collection of five- and six-membered saturated heterocycles from aryl alkenes and a family of redox-active radical precursors bearing tethered nucleophiles. This transformation is mediated by a combination of an Ir(III) photocatalyst and a Brønsted acid under visible-light irradiation. A reductive proton-coupled electron transfer generates a reactive radical which undergoes addition to an alkene. Then, an oxidative radical-polar crossover step leading to carbocation formation is followed by ring closure through cyclization of the tethered nucleophile. A wide range of heterocycles are easily accessible, including pyrrolidines, piperidines, tetrahydrofurans, morpholines, δ-valerolactones, and dioxanones. We demonstrate the scope of this approach through broad structural variation of both reaction components. This method is amenable to gram-scale preparation and to complex fragment coupling.

Keywords

heterocycles
PCET
radical-polar crossover
photoredox

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Experimental details, characterization data, and NMR spectra
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.