The myxobacterial antibiotic myxovalargin: Biosynthesis, structural revision, total synthesis and molecular characterization of ribosomal inhibition

21 July 2022, Version 1

Abstract

Resistance of bacterial pathogens against antibiotics is declared by WHO as a major global health threat. As novel antibacterial agents are urgently needed, we re-assessed the broad-spectrum myxobacterial antibiotic myxovalargin and found it to be extremely potent against Mycobacterium tuberculosis. To ensure compound supply for further development we studied myxovalargin biosynthesis in detail enabling production via fermentation of a native producer. Feeding experiments as well as functional genomics analysis suggested a structural revision, which was eventually corroborated by development of a concise total synthesis. The ribosome was identified as the molecular target based on resistant mutant sequencing and a cryo-EM structure revealed that myxovalargin binds within and completely occludes the exit tunnel, consistent with a mode of action to arrest translation during a late stage of translation initiation. Pharmacokinetic and initial in vivo efficacy studies indicated that myxovalargin and analogues show potential for development as an antibacterial agent.

Keywords

Natural products
tuberculosis
myxobacteria
total synthesis
Cryo-EM

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Supporting information including methods
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.