Tris(2,4,6-trimethoxyphenyl)phosphine - a Lewis base able to compete with phosphazene bases in catalysing oxa-Michael reactions

20 July 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The performance of the strong Lewis base tris(2,4,6-trimethoxyphenyl)phosphine (TTMPP) in catalysing oxa-Michael reactions is assessed and compared with other electron-rich tertiary arylphosphines and, as the benchmark, with the Brønsted base 1-tert-butyl-2,2,4,4,4-pentakis-(dimethylamino)-2λ5,4λ5-catenadi-(phosphazen) (P2-tBu). A matrix of five varyingly strong Michael acceptors and four varyingly acidic alcohols is used to evaluate the activity of the catalysts. The study attributes TTMPP a significant superiority over other arylphosphine based Lewis bases and a similar activity as P2-tBu under highly concentrated, quasi solvent free conditions. Furthermore, the performance of TTMPP and P2-tBu is compared in the oxa-Michael polymerisation reactions of 2-hydroxyethyl acrylate (HEA) and of 1,4-butanediol diacrylate (BDDA) with diols under solvent free conditions. In the case of HEA TTMPP is to be preferred over P2-tBu because the latter gave a not fully soluble polymeric product. TTMPP is the first Lewis base capable of catalysing the oxa-Michael polymerisation of diacrylates and diols, albeit P2-tBu catalysis results in higher molar masses in this polymerisation reaction. Furthermore, the performance of the catalysts under diluted conditions was assessed and the activity of TTMPP is distinctly more concentration dependent than the activity of P2-tBu. The use of the polar, protic solvent t-butanol mitigates the negative impact of dilution exerted by nonpolar, aprotic and polar, aprotic solvents such as toluene or dimethylformamide. Finally, data attesting TTMPP a limited, but for practical work under air still acceptable, stability to oxygen are disclosed.

Keywords

oxa-Michael addition
Lewis-base catalysis
phosphine

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
containing experimental details, characterization of oxa-Michael adducts, polymers and TTMPP derived compounds and computational results.
Actions
Title
xyz files
Description
xyz files for calculated compounds as a zip-archive.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.