Catalytic nitrogen fixation using visible light energy

13 July 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Herein, we established an iridium- and molybdenum-catalysed process for the synthesis of ammonia from dinitrogen that takes place under ambient reaction conditions and under visible light irradiation. In this reaction system, cationic iridium complexes bearing 2-(2-pyridyl)phenyl and 2,2’-bipyridine-type ligands and molybdenum triiodide complexes bearing N-heterocyclic carbene-based PCP-type pincer ligands acted as cooperative catalysts to activate 9,10-dihydroacridine and dinitrogen, respectively. Interestingly, under visible light irradiation, 9,10-dihydroacridine acted as a one-electron and one-proton source. The findings of this study provide a novel approach to catalytic nitrogen fixation that is driven by visible light energy. The reaction of dinitrogen with 9,10-dihydroacridine was not thermodynamically favoured, and it only took place under visible light irradiation. Therefore, the described reaction system is one that affords visible light energy–driven ammonia formation from dinitrogen. The findings reported herein can contribute to the development of novel next-generation nitrogen fixation systems powered by renewable energy.

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Supplementary Information of catalytic nitrogen fixation using visible light energy
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.