Discovery and molecular elucidation of pervasive Aflatoxin B1 oxidation activity in the laccase superfamily

20 July 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Aflatoxins are mutagenic mycotoxins which are believed to impact over a billion people every year, particularly in the developing world, and, when consumed, lead to stunting, immunosuppression, and liver cancer. With the worsening of climate change, molds and their toxic secondary metabolites will become an even greater risk to humanity. In this work we use in vitro and in silico methodologies to evaluate the potential for and propose the use of multicopper oxidases, specifically laccases, to enzymatically degrade aflatoxin B1 (AFB1), a highly mutagenic mycotoxin, to a safer byproduct. A panel of assays was performed on 45 members of the multicopper oxidase family with 20 different enzymes showing the ability to degrade AFB1 and establishing the pervasiveness of this activity in the family. In order to better understand how laccases oxidize AFB1, we utilized density functional theory to identify likely atoms within AFB1 for oxidation to occur. Once a reaction scheme had been established, we employed computational docking with Rosetta to ascertain which structural features are likely to contribute to AFB1 binding. These predictions can provide insight for future efforts to optimize enzymes for detoxifying AFB1.

Keywords

aflatoxin
mycotoxin
laccase
multi-copper oxidase
GAUSSIAN16
Rosetta
oxidation
bioremediation

Supplementary materials

Title
Description
Actions
Title
Supplementary Supporting Material
Description
These figures provide additional data and visualizations that support the main manuscript text.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.